Title 7 Natural Resources and Environmental Control

1100 Air Quality Management Section

1130 Title V State Operating Permit Program

11/15/1993- <u>xx/xx/xx</u>	

2.0 Definitions	

"Major source"	

(2) A major stationary source of air pollutants, as defined in section 302 (Title III - General Definitions) of the Act, that directly emits or has the potential to emit, 100 tpy or more of any air pollutant <u>subject to regulation</u> (including any major source of fugitive emissions of any such pollutant, as determined by rule by the Administrator). The fugitive emissions of a stationary source shall not be considered in determining whether it is a major stationary source for the purposes of section 302(j) (Title III - General Definitions) of the Act, unless the source belongs to one of the following categories of stationary sources:

"Subject to regulation" means, for any air pollutant, that the pollutant is subject to either a provision in the Clean Air Act, or a nationally-applicable regulation codified by the EPA, that requires actual control of the quantity of emissions of that pollutant, and that such a control requirement has taken effect and is operative to control, limit or restrict the quantity of emissions of that pollutant released from the regulated activity. Except that:

(1)Greenhouse gases (GHG), the air pollutant defined in 40 CFR 86.1818 – 12(a) as the aggregate group of six greenhouse gases: carbon dioxide (CO_2), nitrous oxide (N_2O), methane (CH_4), hydrofluorocarbons (HFC), perfluorocarbons (PFC), and sulfur hexafluoride (SF_6), shall not be subject to regulation unless, as of July

- 1, 2011, the GHG emissions are at a stationary source emitting or having the potential to emit 100,000 tpy CO₂ equivalent emissions.
- (2) The term tpy CO_2 equivalent emissions (CO_2 e) shall represent an amount of GHG emitted, and shall be computed by multiplying the mass amount of emissions (tpy), for each of the six greenhouse gases in the pollutant GHG, by the gas's associated global warming potential as shown in Table 2-1 of this regulation "Global Warming Potentials", and summing the resultant value for each to compute a tpy CO_2 e.

Table 2-1

GLOBAL WARMING POTENTIALS

<u>Name</u>	CAS No.	Chemical formula	Global warming potential (100 yr.)
Carbon dioxide	124-38-9	CO ₂	<u>1</u>
Methane	74-82-8	<u>CH</u> ₄	<u>21</u>
Nitrous oxide	10024-97-2	<u>N₂O</u>	<u>310</u>
<u>HFC-23</u>	<u>75–46–7</u>	CHF ₃	<u>11,700</u>
<u>HFC-32</u>	<u>75–10–5</u>	CH ₂ F ₂	<u>650</u>
<u>HFC-41</u>	593-53-3	CH ₃ F	<u>150</u>
<u>HFC-125</u>	<u>354–33–6</u>	C ₂ HF ₅	<u>2,800</u>
<u>HFC-134</u>	359-35-3	$C_2H_2F_4$	<u>1,000</u>
<u>HFC-134a</u>	811-97-2	CH ₂ FCF ₃	<u>1,300</u>
<u>HFC-143</u>	430-66-0	$C_2H_3F_3$	<u>300</u>
<u>HFC-143a</u>	420-46-2	$C_2H_3F_3$	<u>3,800</u>
<u>HFC-152</u>	624-72-6	CH ₂ FCH ₂ F	<u>53</u>
<u>HFC-152a</u>	75–37–6	CH ₃ CHF ₂	<u>140</u>
HFC-161	353-36-6	CH ₃ CH ₂ F	<u>12</u>
HFC-227ea	431-89-0	C ₃ HF ₇	<u>2,900</u>
HFC-236cb	677-56-5	CH ₂ FCF ₂ CF ₃	<u>1,340</u>
HFC-236ea	431-63-0	CHF ₂ CHFCF ₃	<u>1,370</u>
HFC-236fa	690-39-1	$C_3H_2F_6$	<u>6,300</u>
HFC-245ca	679-86-7	$C_3H_3F_5$	<u>560</u>
HFC-245fa	460-73-1	CHF ₂ CH ₂ CF ₃	<u>1,030</u>
HFC-365mfc	406-58-6	CH ₃ CF ₂ CH ₂ CF ₃	<u>794</u>
HFC-43-10mee	138495-42- <u>8</u>	CF3CFHCFHCF2CF3	<u>1,300</u>

Sulfur hexafluoride	2551–62–4 SF ₆		23,900
PFC-14 (Perfluoromethane)	75–73–0 <u>CF</u> ₄		6,500
PFC-116 (Perfluoroethane)	76–16–4 <u>C₂F₆</u>		9,200
PFC-218 (Perfluoropropane)	76–19–7 <u>C₃F₈</u>		7,000
Perfluorocyclopropane	931–91–9 C-C ₃	<u>F</u> ₆	17,340
PFC-3-1-10 (Perfluorobutane)	355–25–9 <u>C₄F₁₀</u>	<u>)</u>	7,000
Perfluorocyclobutane	115–25–3 C-C ₄	<u>F</u> ₈	<u>8,700</u>
PFC-4-1-12 (Perfluoropentane)	678–26–2 C ₅ F ₁₂	2	7,500
PFC-5-1-14 (Perfluorohexane)	355–42–0 <u>C₆F₁</u>	1	7,400
PFC-9-1-18	306–94–5 <u>C₁₀F</u>	18	<u>7,500</u>